use crate::expressions::expression::{Expression, OppositeEq}; use crate::expressions::operator::BinaryOperator; pub trait Simplify { fn elimination_of_implication(&self) -> Self; fn double_negation_elimination(&self) -> Self; fn de_morgans_laws(&self) -> Self; fn absorption_law(&self) -> Self; fn associative_law(&self) -> Self; fn distribution_law(&self) -> Self; fn commutative_law(&self) -> Self; } impl Simplify for Expression { /// Eliminate the implication operator from the expression. /// This is done by replacing `a ➔ b` with `¬a ⋁ b`. fn elimination_of_implication(&self) -> Self { match self { Expression::Not(expr) => not!(expr.elimination_of_implication()), Expression::Binary(left, BinaryOperator::Implication, right) => { let left = left.elimination_of_implication(); let right = right.elimination_of_implication(); or!(not!(left), right) } Expression::Binary(left, operator, right) => { let left = left.elimination_of_implication(); let right = right.elimination_of_implication(); binary!(left, *operator, right) } atomic @ Expression::Atomic(_) => atomic.clone(), } } /// Eliminate double negations from the expression. /// This is done by replacing `¬¬a` with `a`. /// This function is recursive and will continue to eliminate double negations until none are left. fn double_negation_elimination(&self) -> Self { match self { Expression::Not(expr) => { if let Expression::Not(inner) = *expr.clone() { inner.double_negation_elimination() } else { not!(expr.double_negation_elimination()) } } Expression::Binary(left, operator, right) => { let left = left.double_negation_elimination(); let right = right.double_negation_elimination(); binary!(left, *operator, right) } atomic @ Expression::Atomic(_) => atomic.clone(), } } fn de_morgans_laws(&self) -> Self { match self { Expression::Not(expr) => { match *expr.clone() { Expression::Binary(left, BinaryOperator::And, right) => { // TODO unnecessary cloning calls to de_morgans_laws? let left = not!(left.de_morgans_laws()); let right = not!(right.de_morgans_laws()); or!(left, right).de_morgans_laws() } Expression::Binary(left, BinaryOperator::Or, right) => { let left = not!(left.de_morgans_laws()); let right = not!(right.de_morgans_laws()); and!(left, right).de_morgans_laws() } _ => not!(expr.de_morgans_laws()), } } Expression::Binary(left, operator, right) => { let left = left.de_morgans_laws(); let right = right.de_morgans_laws(); binary!(left, *operator, right) } atomic @ Expression::Atomic(_) => atomic.clone(), } } // TODO deduplicate code fn absorption_law(&self) -> Self { match self { Expression::Binary(left, BinaryOperator::And, right) => { let (left_ref, right_ref) = (left.as_ref(), right.as_ref()); match (left_ref, right_ref) { (_, Expression::Binary(right_left, BinaryOperator::Or, right_right)) => { if left_ref == right_left.as_ref() || left_ref == right_right.as_ref() { return left.absorption_law(); } else if right_left.is_atomic() && right_right.is_atomic() && left.opposite_eq(right_left) { if left.opposite_eq(right_left) { return and!(left.absorption_law(), right_left.absorption_law()); } else if left.opposite_eq(right_right) { return and!(left.absorption_law(), right_right.absorption_law()); } } and!(left.absorption_law(), right.absorption_law()) } (Expression::Binary(left_left, BinaryOperator::Or, left_right), _) => { if right_ref == left_left.as_ref() || right_ref == left_right.as_ref() { return right.absorption_law(); } else if left_left.is_atomic() && left_right.is_atomic() && right.opposite_eq(left_left) { if right.opposite_eq(left_left) { return and!(left_right.absorption_law(), right.absorption_law()); } else if right.opposite_eq(left_right) { return and!(left_left.absorption_law(), right.absorption_law()); } } and!(left.absorption_law(), right.absorption_law()) } (left, right) => and!(left.absorption_law(), right.absorption_law()) } } Expression::Binary(left, BinaryOperator::Or, right) => { let (left_ref, right_ref) = (left.as_ref(), right.as_ref()); match (left_ref, right_ref) { (_, Expression::Binary(right_left, BinaryOperator::And, right_right)) => { if left_ref == right_left.as_ref() || left_ref == right_right.as_ref() { return left.absorption_law(); } else if right_left.is_atomic() && right_right.is_atomic() && left.opposite_eq(right_left) { if left.opposite_eq(right_left) { return or!(left.absorption_law(), right_left.absorption_law()); } else if left.opposite_eq(right_right) { return or!(left.absorption_law(), right_right.absorption_law()); } } or!(left.absorption_law(), right.absorption_law()) } (Expression::Binary(left_left, BinaryOperator::And, left_right), _) => { if right_ref == left_left.as_ref() || right_ref == left_right.as_ref() { return right.absorption_law(); } else if left_left.is_atomic() && left_right.is_atomic() && right.opposite_eq(left_left) { if right.opposite_eq(left_left) { return or!(left_right.absorption_law(), right.absorption_law()); } else if right.opposite_eq(left_right) { return or!(left_left.absorption_law(), right.absorption_law()); } } or!(left.absorption_law(), right.absorption_law()) } (left, right) => or!(left.absorption_law(), right.absorption_law()) } } Expression::Binary(left, operator, right) => { let left = left.absorption_law(); let right = right.absorption_law(); binary!(left, *operator, right) } Expression::Not(expr) => not!(expr.absorption_law()), atomic => atomic.clone(), } } fn associative_law(&self) -> Self { todo!("? | Associative law: (a ⋀ b) ⋀ c == a ⋀ (b ⋀ c) and (a ⋁ b) ⋁ c == a ⋁ (b ⋁ c)") } // TODO deduplicate code fn distribution_law(&self) -> Self { match self { Expression::Binary(left, BinaryOperator::And, right) => { match (left.as_ref(), right.as_ref()) { (Expression::Atomic(_), Expression::Binary(right_left, BinaryOperator::Or, right_right)) => { let right_left = right_left.distribution_law(); let right_right = right_right.distribution_law(); or!(and!(*left.clone(), right_left), and!(*left.clone(), right_right)) } (Expression::Binary(left_left, BinaryOperator::Or, left_right), Expression::Atomic(_)) => { let left_left = left_left.distribution_law(); let left_right = left_right.distribution_law(); or!(and!(left_left, *right.clone()), and!(left_right, *right.clone())) } (left, right) => and!(left.distribution_law(), right.distribution_law()) } } Expression::Binary(left, BinaryOperator::Or, right) => { match (left.as_ref(), right.as_ref()) { (Expression::Atomic(_), Expression::Binary(right_left, BinaryOperator::And, right_right)) => { let right_left = right_left.distribution_law(); let right_right = right_right.distribution_law(); and!(or!(*left.clone(), right_left), or!(*left.clone(), right_right)) } (Expression::Binary(left_left, BinaryOperator::And, left_right), Expression::Atomic(_)) => { let left_left = left_left.distribution_law(); let left_right = left_right.distribution_law(); and!(or!(left_left, *right.clone()), or!(left_right, *right.clone())) } (left, right) => or!(left.distribution_law(), right.distribution_law()) } } Expression::Binary(left, operator, right) => { let left = left.distribution_law(); let right = right.distribution_law(); binary!(left, *operator, right) } Expression::Not(expr) => expr.distribution_law(), atomic => atomic.clone(), } } fn commutative_law(&self) -> Self { todo!("? | Order of operands does not matter in AND and OR operations.") } } #[cfg(test)] mod tests { use crate::expressions::simplify::Simplify; #[test] fn test_elimination_of_implication() { let expression = eval!("a" => "b").elimination_of_implication(); assert_eq!(expression, or!(not!(atomic!("a")), atomic!("b"))); } #[test] fn test_elimination_of_implication_nested() { let expression = implies!(atomic!("a"), implies!(atomic!("b"), atomic!("c"))).elimination_of_implication(); assert_eq!(expression, or!(not!(atomic!("a")), or!(not!(atomic!("b")), atomic!("c")))); } #[test] fn test_elimination_of_implication_none() { let expression = eval!("a" && "b").elimination_of_implication(); assert_eq!(expression, eval!("a" && "b")); } #[test] fn test_elimination_of_implication_nested_none() { let expression = or!(atomic!("a"), and!(atomic!("b"), atomic!("c"))).elimination_of_implication(); assert_eq!(expression, or!(atomic!("a"), and!(atomic!("b"), atomic!("c")))); } #[test] fn test_double_negation_elimination() { let expression = not!(not!(atomic!("a"))).double_negation_elimination(); assert_eq!(expression, atomic!("a")); } #[test] fn test_triple_negation_elimination() { let expression = not!(not!(not!(atomic!("a")))).double_negation_elimination(); assert_eq!(expression, not!(atomic!("a"))); } #[test] fn test_five_negation_elimination() { let expression = not!(not!(not!(not!(not!(atomic!("a")))))).double_negation_elimination(); assert_eq!(expression, not!(atomic!("a"))); } #[test] fn test_no_negation_elimination() { let expression = atomic!("a").double_negation_elimination(); assert_eq!(expression, atomic!("a")); } #[test] fn test_double_negation_nested_elimination() { let expression = and!(or!(not!(eval!(!"a")), eval!("b")), not!(eval!(!"c"))).double_negation_elimination(); assert_eq!(expression, and!(or!(atomic!("a"), atomic!("b")), atomic!("c"))); } #[test] fn test_de_morgans_laws_and() { let expression = not!(eval!("a" && "b")).de_morgans_laws(); assert_eq!(expression, or!(not!(atomic!("a")), not!(atomic!("b")))); } #[test] fn test_de_morgans_laws_or() { let expression = not!(eval!("a" || "b")).de_morgans_laws(); assert_eq!(expression, and!(not!(atomic!("a")), not!(atomic!("b")))); } #[test] fn test_de_morgans_laws_nested_or() { let expression = not!(or!(eval!("a" && "b"), atomic!("c"))).de_morgans_laws(); // ¬(a ⋀ b ⋁ c) assert_eq!(expression, and!(or!(eval!(!"a"), eval!(!"b")), eval!(!"c"))); // ¬(a ⋀ b) ⋀ ¬c == (¬a ⋁ ¬b) ⋀ ¬c } #[test] fn test_de_morgans_laws_nested_and() { let expression = not!(and!(eval!("a" || "b"), atomic!("c"))).de_morgans_laws(); // ¬(a ⋁ b ⋀ c) assert_eq!(expression, or!(and!(eval!(!"a"), eval!(!"b")), eval!(!"c"))); // ¬(a ⋁ b) ⋀ ¬c == (¬a ⋀ ¬b) ⋁ ¬c } #[test] fn test_de_morgans_laws_nested_and_or() { let expression = not!(and!(eval!("a" || "b"), or!(atomic!("c"), atomic!("d")))).de_morgans_laws(); // ¬(a ⋁ b ⋀ c ⋁ d) assert_eq!(expression, or!(and!(eval!(!"a"), eval!(!"b")), and!(eval!(!"c"), eval!(!"d")))); // ¬(a ⋁ b) ⋀ ¬(c ⋁ d) == (¬a ⋀ ¬b) ⋁ (¬c ⋀ ¬d) } #[test] fn test_absorption_law_and() { let expression = and!(atomic!("a"), eval!("a" || "b")).absorption_law(); assert_eq!(expression, atomic!("a")); } #[test] fn test_absorption_law_or() { let expression = or!(atomic!("a"), eval!("a" && "b")).absorption_law(); assert_eq!(expression, atomic!("a")); } #[test] fn test_absorption_law_nested_and() { let expression = and!(atomic!("a"), or!(atomic!("a"), atomic!("b"))).absorption_law(); assert_eq!(expression, atomic!("a")); } // !A & B | A <=> B | A #[test] fn test_absorption_law_not() { let expression = or!(and!(not!(atomic!("a")), atomic!("b")), atomic!("a")).absorption_law(); assert_eq!(expression, or!(atomic!("b"), atomic!("a"))); } // A & B | !A <=> B | !A #[test] fn test_absorption_law_not_reversed() { let expression = or!(and!(atomic!("a"), atomic!("b")), not!(atomic!("a"))).absorption_law(); assert_eq!(expression, or!(atomic!("b"), not!(atomic!("a")))); } // !A & B | !A <=> !A #[test] fn test_absorption_law_double_not() { let expression = or!(and!(not!(atomic!("a")), atomic!("b")), not!(atomic!("a"))).absorption_law(); assert_eq!(expression, not!(atomic!("a"))); } // (A | B) & !A <=> B & !A #[test] fn test_in_parenthesis() { let expression = and!(or!(atomic!("a"), atomic!("b")), not!(atomic!("a"))).absorption_law(); assert_eq!(expression, and!(atomic!("b"), not!(atomic!("a")))); } #[test] fn test_distributive_law_and() { let expression = and!(atomic!("a"), or!(atomic!("b"), atomic!("c"))).distribution_law(); assert_eq!(expression, or!(and!(atomic!("a"), atomic!("b")), and!(atomic!("a"), atomic!("c")))); } #[test] fn test_distributive_law_or() { let expression = or!(atomic!("a"), and!(atomic!("b"), atomic!("c"))).distribution_law(); assert_eq!(expression, and!(or!(atomic!("a"), atomic!("b")), or!(atomic!("a"), atomic!("c")))); } }